FORM TP 2014134

TEST CODE 02205032

MAY/JUNE 2014

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®

APPLIED MATHEMATICS

MATHEMATICAL APPLICATIONS

UNIT 2 – Paper 032

1 hours 30 minutes

13 JUNE 2014 (p.m.)

This examination paper consists of THREE sections: Discrete Mathematics, Probability and Distributions, and Particle Mechanics.

Each section consists of 1 question. The maximum mark for each section is 20. The maximum mark for this examination is 60. This examination consists of 4 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. DO NOT open this examination paper until instructed to do so.
- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, all numerical answers MUST be given exactly OR to three significant figures as appropriate.

Examination Materials:

Mathematical formulae and tables (Revised 2010) Electronic calculator Ruler and graph paper

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2012 Caribbean Examinations Council All rights reserved.

02205032/CAPE 2014

- 2 -

SECTION A

MODULE 1: DISCRETE MATHEMATICS

- 1. (a) The propositions p and q are such that p is 2 + 2 = 6 and q is 1 + 2 = 3.
 - (i) Write down a Boolean expression for

$$2+2 \neq 6$$
 and if $2+2=6$ then $1+2=3$. [3 marks]

- (ii) Construct a truth table for the expression obtained in (a) and show that its truth value is $\sim p$. [4 marks]
- (b) Use logic gates to draw a circuit for $\sim (p \wedge q) \lor r$. [3 marks]
- (c) The table below gives the profit, in dollars, to be gained by shipping four packages *A*, *B*, *C* and *D* by GX Courier, YG Courier, IL Courier and AB Courier.

	GX Courier	YG Courier	IL Courier	AB Courier
A	45	47	48	49
В	55	53	50	50
С	45	46	43	48
D	52	54	49	52

Use Hungarian algorithm to allocate EACH package to a courier service so as to maximize the profit. [7 marks]

(d) The diagram below shows the routes a student may use to get from C to A.

- (i) Find the different paths the student may use to get to A from C. [2 marks]
- (ii) State the degree of *A*. [1 mark]

Total 20 marks

GO ON TO THE NEXT PAGE

02205032/CAPE 2014

- 3 -

SECTION B

MODULE 2: PROBABILITY AND DISTRIBUTIONS

2. (a) The continuous random variable X has cumulative distribution function F given by

$$F(x) = \begin{cases} 0, & x \le 3\\ k (x-3), & 3 \le x \le 6\\ 1, & x \ge 6 \end{cases}$$

where *k* is a constant.

Determine

(i) the value of k [3 marks]

(ii)
$$P(4 < X \le 5)$$
 [3 marks]

- (iii) the median of X [3 marks]
- (iv) the probability density function of X [3 marks]

$$(v) E(X). \qquad [4 marks]$$

(b) A discrete uniform random variable Y has the probability density function f given by

$$f(y) = \begin{cases} \frac{1}{6}, & y = 1, 2, 3, 4, 5, 6\\ 0, & otherwise \end{cases}$$

Determine

- (i) *E*(*Y*) [2 marks]
- (ii) E(3Y+2). [2 marks]

Total 20 marks

SECTION C

MODULE 3: PARTICLE MECHANICS

Take $g = 10 \text{ ms}^{-2}$

- **3.** (a) A car travelling at 90 kmh⁻¹ is brought to rest with a constant retardation in a distance of 50 m. Calculate
 - (i) the retardation [3 marks]
 - (ii) the time taken for the car to be brought to rest. [3 marks]
 - (b) A block is pulled up a smooth plane inclined at an angle of $\sin^{-1} \left(\frac{1}{30}\right)$ to the horizontal at a constant speed of 12 ms⁻¹. The work done against gravity in 2 seconds is 360 J. Find the weight of the block. [5 marks]
 - (c) A particle D of mass 3m kg rests on a rough plane inclined at 30° to the horizontal. D is attached to one end of a light, inextensible string which passed over a smooth, weightless pulley which is fixed at the top of the plane and has a particle E of mass 4m kg hanging freely at the other end. If the frictional force is equal to one-quarter of the normal reaction of D, calculate the acceleration of D. [9 marks]

Total 20 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

- 4 -